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1 Introduction

A classical social choice problem is the following. A society formed by the set of agents has to

choose an outcome from a given set of outcomes. Since agents may have di¤erent preferences

over outcomes, and it is desirable that the chosen outcome be perceived as a compromise

among their potentially di¤erent preferences, they have to be asked about them. A social

choice function (a rule) collects individual preferences and selects, in a systematic and known

way, an outcome taking into account the pro�le of revealed preferences.

This classical approach assumes that the composition of the society is independent of the

chosen outcome. There are many situations for which this assumption is not appropriate

because the �nal composition of the society may depend on the chosen outcome. For instance,

membership of a political party may depend on the positions the party takes on issues like

the death penalty, abortion or the possibility of allowing a region of a country to become

independent. A professor in a department may start looking for a position elsewhere if he

considers that the recruitment of the department has not being satisfactory to his standards;

and this, in turn might trigger further exits. Hence, to be able to deal with such situations

the classical social choice model has to be modi�ed to include explicitly the possibility that

initial members may leave it as the consequence of the chosen outcome and thus, preferences

have to be extended to order pairs formed by the �nal society and the chosen outcome.

There is a literature that has already considered explicitly the dependence of the �nal

society on its choices in speci�c settings.1 Barberà, Maschler and Shalev (2001) consider a

dynamic model in which the set of founders and the set of candidates are �xed, and the society

repeatedly holds elections (to admit new members) for a �xed number of periods using voting

by quota 1 (one vote is su¢ cient for admission, and voters can support as many candidates

as they wish). Chosen candidates at one period become voters, together with remaining

members, next period. They show that very interesting strategic behavior may emerge in

equilibrium, even when the used voting method is very simple. Giving the right to vote to

elected candidates and not allowing non elected candidates to vote at all, are two extreme

ways of transferring in�uence among agents. Barberà and Perea (2002) study a similar model

in which the transfer of in�uence to new members or non elected candidates behaves in a

continuous way instead of being binary. They study the (essentially) unique subgame perfect

equilibrium of a model with these features and identify its simple dynamic structure. Berga,

1See for instance Roberts (1999) for problems related to club formation and Sobel (2000) for the declining

of standards in societies that chose their members.
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Bergantiños, Massó and Neme (2004) study also the problem of a society choosing a subset

of new members, from a �nite set of candidates, using voting by committees as in Barberà,

Sonnenschein and Zhou (1991). They consider explicitly the possibility that initial members

of the society (founders) may want to exit, if they do not like the resulting new society. They

show that, if founders have separable (or additive) preferences, the unique strategy-proof,

stable and onto rule is the one where candidates are chosen unanimously and no founder exits.

Berga, Bergantiños, Massó and Neme (2006) study equilibria of a �nite extensive form game

in which, after knowing the chosen alternative, members may reconsider their membership by

either staying or exiting. In turn, and as a consequence of the exit of some of its members,

other members might now �nd undesirable to belong to the society as well. For general exit

procedures they analyze the exit behavior of members after knowing the chosen alternative.

All these papers mentioned above study speci�c models in terms of the voting methods under

which members choose the outcome and the timing under which members reconsider their

membership.

In this paper we look at the general setting without being speci�c about the two issues.

We do that by considering that the set of alternatives are all pairs formed by a subset of the

original society (an element in 2N ; the subset of the set N of agents that will remain in the

society) and an outcome in X. Then, we assume that agents�preferences are de�ned over

the set of alternatives 2N � X and satisfy two natural requirements. First, each agent has

strict preferences between any two alternatives, provided he belongs to at least one of the

two corresponding societies. Second, each agent is indi¤erent between any two alternatives,

provided he is not a member of any of the two corresponding societies; namely, agents that

do not belong to the �nal society do not care about neither its composition nor the chosen

outcome.

We consider rules that operate on this restricted domain of preference pro�les by selecting,

for each pro�le, an alternative (a �nal society and an outcome). An agent that understands

the e¤ect of his revealed preference on the chosen alternative faces the strategic problem of

selecting it. Depending on the rule under consideration, the agent may realize that the solution

to this problem is ambiguous because it may depend on the agent�s expectations that he has

about the revealed preferences of the others, and in turn he may also realize that to formulate

hypothesis about those revealed preferences require hypothesis about the others�expectations,

and so on. Strategy-proof rules make all these considerations unnecessary since truthtelling is

a weakly dominant strategy of the direct revelation game at each pro�le; namely, each agent�s

decision problem is independent of the revealed preferences by the others, and truth-telling is
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an optimal decision. A rule is unanimous if it always selects an alternative belonging to the

set of common best alternatives, whenever this set is nonempty. A rule is non-bossy if it is

invariant with respect to the change of preferences of an agent who is not a member of the

two �nal societies.

Observe that the (natural) domain restriction under consideration requires that each agent

i 2 N is indi¤erent among a large subset of alternatives, all those for which i does not belong to

their corresponding �nal societies; namely, i is indi¤erent among all alternatives in the subset

2S�i �X, where 2S�i is the family of all subsets of N that do not contain i. Hence, the set of

individual preferences over which we want the rule to operate is far from being the universal

domain of preferences over the set of alternatives. Thus, the Gibbard-Satterthwaite theorem

(see Gibbard (1973) and Satterthwaite (1975)) does not apply and the goal of identifying all

strategy-proof rules (or a tractable subclass) remains meaningful and interesting. We want

to emphasize that the reason why our model is not a particular case of the classical social

choice model, where one can directly apply the Gibbard-Satterthwaite theorem, is the speci�c

domain restriction we are interested in. It follows from the particular indi¤erences admitted

over the set 2N � X which are natural for settings where agents, to enjoy the e¤ects of the

chosen outcome, have to remain members of the �nal society and, at the same time, non

�nal members do not care about the speci�c chosen outcome. Of course, without this kind

of indi¤erences, the domain of preferences would be the universal domain and the Gibbard-

Satterthwaite theorem would apply, precipitating dictatorship.

Our result, Theorem 1, characterizes the class of all strategy-proof, unanimous and non-

bossy rules as the family of all serial dictator rules. A serial dictator rule, relative to an

ordering of the agents, gives to the �rst agent the power to select his best alternative, and

only if this agent has many indi¤erent alternatives at the top of his preference, the second

agent in the order has the power to select his best alternative among those declared as being

at the top and indi¤erent by the �rst agent, and proceeds similarly following the ordering of

the agents. A serial dictator rule moves away from just dictatorship by using the loophole left

by the potential indi¤erences, present in the domain, and it does so by allocating the power

among agents to break the indi¤erences sequentially. This often can be done in a strategy-

proof way and satisfying at the same time other desirable properties; for instance, weak notions

of e¢ ciency (like unanimity), non arbitrariness (like non-bosiness), or neutrality, consistency,

and so on.

Indeed, serial dictator rules have been characterized as the family of strategy-proof rules

(satisfying in addition some other properties) in many di¤erent settings. For instance, Sat-
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terthwaite and Sonnenschein (1981) contains several characterizations of serial dictator rules

for restricted domains of preference pro�les associated with economic environments. Svensson

(1999) shows that, for allocation problems where a �nite number of indivisible goods have to

be assigned to a �nite number of agents, the set of all serial dictator rules coincides with the

family of strategy-proof, non-bossy and neutral rules; Papai (2001) extends this result when

agents may receive more than one object and she shows that a rule is strategy-proof, totally

non-bossy and e¢ cient if and only if it is a serial dictator rule. Bade (2015) shows that,

in house allocation problems with costly endogenous information acquisition that in�uences

agents�valuations of objects, a rule is strategy-proof, non-bossy and ex-ante e¢ cient if and

only if it is a serial dictator rule.

In a companion note (Bergantiños, Massó and Neme (2016)) we consider the same setting

but assume that the pro�le is common knowledge (and hence, the strategic revelation of agents�

preferences is not an issue) and focus on the properties of internal stability and consistency,

which guarantee that the chosen alternative is indeed the �nal one in a doble sense. Internal

stability says that nobody can force an agent to remain in the society if the agent does not

want to do so. Consistency says that if the rule would be applied again to the �nal society it

would choose the same alternative, so there is no need to do so. We exhibit the di¢ culties of

�nding rules satisfying the two properties; however, we show that approval voting, adapted to

our setting, not only satis�es internal stability and consistency but it also satis�es e¢ ciency

and neutrality.

The paper is organized as follows. In Section 2 we describe the model. Section 3 contains

the de�nitions of the properties of rules that we will be interested in. In Section 4 we state, as

Theorem 1, the characterization of the class of all strategy-proof, unanimous and non-bossy

rules as the family of all serial dictator rules. Section 5 contains the proof of Theorem 1.

2 Preliminaries

Let N = f1; : : : ; ng be the set of agents, with n � 2; and let X be the �nite set of possible

outcomes. We are interested in situations where some agents may not be part of the �nal

society, perhaps as the consequence of the chosen outcome. To model such situations, let

A = 2N �X be the set of alternatives and assume that each i 2 N has preferences over A.2

We will often use the notation a for a generic (S; x) 2 A; i.e., a � (S; x), a0 � (S 0; x0); and
2Note that we are admitting the possibility that the society selects all outcomes with no agent in the �nal

society; i.e., for all x 2 X, (?; x) 2 A.
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so on. Let Ri denote agent i�s (weak) preference over A; where for any pair a; a0 2 A; aRia0

means that i considers a to be at least as good as a0: Let Pi and Ii denote the strict and

indi¤erence relations over A induced by Ri, respectively; namely, for any pair a; a0 2 A; aPia0

if and only if aRia0 and :a0Ria; and aIia0 if and only if aRia0 and a0Ria: We assume that
each i does not care about all alternatives at which he does not belong to their corresponding

�nal societies and i is not indi¤erent between any pair of alternatives at which he belongs to

at least one of the two corresponding �nal societies. Namely, we assume that Ri satis�es the

following two properties: for all S; T 2 2N and x; y 2 X;

(P.1) if i =2 S [ T; then (S; x) Ii (T; y) ; and

(P.2) if i 2 S [ T and (S; x) 6= (T; y); then either (S; x)Pi (T; y) or (T; y)Pi (S; x) :

The fact that agents�preferences satisfy (P.1) is the reason why our model cannot mechanically

be embedded into the classical model and a speci�c analysis is required. We see property (P.1)

as being a natural assumption for our setting, and it is a critical requirement for our results

to hold. Let Ri be the set of i�s preferences satisfying (P.1) and (P.2), and let R = �i2NRi

be the set of (preference) pro�les.

We denote the subset of alternatives with the property that i is not a member of the

corresponding �nal society by [?]i = f(S; x) 2 A j i =2 Sg. By (P.1), i is indi¤erent among
them; i.e.,

[?]i = fa 2 A j aIi (?; x) for some x 2 Xg :

By (P.1), (?; x)Ii(?; y) for all x; y 2 X and [?]i can be seen as the indi¤erence class generated
by the empty society. Observe that [?]i may be at the top of i�s preferences. With an abuse
of notation we often treat, when listing a preference ordering, the indi¤erence class [?]i as if
it were an alternative; for instance, given Ri and a 2 A we write aRi[?]i to represent that
aRia

0 for all a0 2 [?]i :
To clarify the model, we relate it with the two examples used in the introduction. The set of

initial members of the political party corresponds to the set of agents, the set of outcomes to the

set of choices (X could be written as f0; 1g3 where for instance, x = (0; 1; 0) would correspond
to the choices of not supporting the death penalty, admitting abortion, and standing against

the independence of the region) and the set S, if the chosen alternative is (S; x), corresponds

to the set of �nal members of the party that want to stay after it supports outcome x.

Similarly, all professors in the department correspond to the agents, the set of outcomes

X to all subsets of hired candidates (again, an outcome x 2 X could be identi�ed with
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x = (x1; : : : ; xK) 2 f0; 1gK ; where K is the number of candidates and xk = 1 if and only if

candidate k is hired) and the set S; if the chosen alternative is (S; x); corresponds to the set

of professors who remain in the department after x has been selected.

Given A0 � A and Ri, the choice of i in A0 at Ri is the set of best alternatives in A0

according to Ri; namely,

C (A0; Ri) = fa 2 A0 j aRia0 for all a0 2 A0g :

Since the set 2N �X is �nite, the choice set is well-de�ned and non-empty.

We de�ne three di¤erent sets that we will use later on, all related to Ri. The top of Ri;

denoted by � (Ri) ; is the set of all best alternatives according to Ri; namely,

� (Ri) = fa 2 A j aRia0 for all a0 2 Ag :

Of course, C(A;Ri) = �(Ri): The lower contour set of Ri at a; denoted by L (a;Ri) ; is the

set of alternatives that are at least as bad as a according to Ri; namely,

L (a;Ri) = fa0 2 A j aRia0g :

The upper contour set of Ri at a; denoted by U (a;Ri) ; is the set of alternatives that are at

least as good as a according to Ri; namely,

U (a;Ri) = fa0 2 A j a0Riag :

A rule is a social choice function f : R! A selecting, for each pro�le R 2 R, an alternative
f(R) 2 A: To be explicit about the two components of the alternative chosen by f at R; we
will often write f (R) as (fN (R) ; fX (R)), where fN (R) 2 2N and fX (R) 2 X:

3 Properties of rules

We present several properties that a rule f : R ! A may satisfy, and that we will consider

later on. The �rst two impose conditions at each pro�le.

A rule is e¢ cient if it always selects a Pareto optimal allocation.

Efficiency For each R 2 R there is no a 2 A with the property that aRif(R) for all
i 2 N and aPjf(R) for some j 2 N:

A rule is unanimous if it selects an alternative in the intersection of all tops, whenever this

intersection is nonempty.
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Unanimity For all R 2 R such that
T
i2N

� (Ri) 6= ?, f (R) 2
T
i2N

� (Ri) :

The next three properties impose conditions by comparing the alternatives chosen by the

rule at two di¤erent pro�les. A rule is strategy-proof if it is always in the best interest of

the agents to reveal their preferences truthfully; namely, truth-telling is a weakly dominant

strategy in the direct revelation game induced by the rule.

Strategy-proofness For all R 2 R; all i 2 N and all R0i 2 Ri;

f (Ri; R�i)Rif (R
0
i; R�i) :

If otherwise; i.e., f(R0i; R�i)Pif(Ri; R�i); we will say that i manipulates f at (Ri; R�i) via R
0
i:

A rule is monotonic if when the chosen alternative at a pro�le improves in the ordering of

the preferences of an agent, the rule selects the same alternative in the new pro�le.

Monotonicity For all R 2 R, all i 2 N and all R0i 2 Ri such that L (f (R) ; Ri) �
L (f (R) ; R0i), f (R) = f (R

0
i; R�i) :

Since the set of indi¤erent alternatives for an agent coincides in all of his preferences,

monotonicity could be reformulated in an equivalent way by stating that for all R 2 R, all
i 2 N and all R0i 2 Ri such that U (f (R) ; Ri) � U (f (R) ; R0i), f (R) = f (R0i; R�i) :

A rule is non-bossy if an agent that is not a member of the �nal society at a pro�le changes

his preferences and remains a nonmember, the rule chooses the same alternative at the two

pro�les.

Non-bossiness For all R 2 R, all i 2 N and all R0i 2 Ri such that i =2 fN (R) [
fN (R

0
i; R�i), f (R

0
i; R�i) = f (R) :

The notion of non-bossiness was introduced by Satterthwaite and Sonnenschein (1981) and

di¤erent variants of it have been intensively used in the literature. Thomson (2014) contains

a systematic analysis of this property by giving alternative de�nitions and interpretations

of non-bosiness, and by relating them to a large family of allocation problems. Since our

de�nition imposes conditions to the rule only after a change of preferences of an agent that

is not a member of the two �nal societies, but at the same time agents are only indi¤erent

among alternatives for which they do not belong to their corresponding �nal societies, our

notion requires that the alternative does not change at all. We found that this is the natural

requirement of non-bossiness in our setting; otherwise, the agent could remain indi¤erent and

still his change in preferences could induce the rule to select di¤erent alternatives.
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4 Characterization result

In this section we state the result of the paper characterizing the class of all strategy-proof,

unanimous and non-bossy rules.3 This class coincides with the family of all serial dictator

rules. To de�ne a serial dictator rule in our setting we need some preliminaries. Let � : N !
f1; : : : ; ng be a permutation (one-to-one mapping) of the set of agents. Given i 2 N; �(i) is
the position assigned to i after applying the permutation � to N . The set of all permutations

� : N ! f1; : : : ; ng will be denoted by �: For � 2 � and 1 � k � n; we write �k to denote
the agent ��1(k):

A serial dictator rule induced by � 2 � and x 2 X, denoted by f�;x; proceeds as follows. Fix
a pro�le R 2 R and look for the best alternative (S1; x1) of agent �1, the �rst in the ordering

induced by �: If �1 2 S1; set f�;x(R) = (S1; x1). Otherwise, look for the best alternative

(S2; x2) of agent �2; the second in the ordering induced by �; with the property that �1 =2 S2:
If �2 2 S2; set f�;x(R) = (S2; x2). Otherwise, look for the best alternative (S3; x3) of agent

�3; the third in the ordering induced by �; provided that �1; �2 =2 S3; and so on. At the end,
look for the best alternative (Sn; xn) of agent �n; the last in the ordering induced by �; with

the property that for each k 2 f1; : : : ; n� 1g ; �k =2 Sn: If �n 2 Sn; set f�;x(R) = (Sn; xn).

Otherwise, and since no agent wants to stay in the society whatever element of X is selected,

set f�;x(R) = (?; x) : So, x plays the role of the residual outcome only when no agent wants
to stay in the society under any circumstance.

We now de�ne a serial dictator rule formally. Fix � 2 � and x 2 X, and let R 2 R be a

pro�le. De�ne f�;x (R) recursively, as follows.

Stage 1. Let A1 = A: Consider two cases:

1. jC (A1; R�1)j = 1: Then, C (A1; R�1) = � (R�1) : Set (S1; x1) = C (A1; R�1) and observe
that �1 2 S1: De�ne

f�;x (R) = (S1; x1):

2. jC (A1; R�1)j > 1: Then, C (A1; R�1) = f(S; x0) 2 A j �1 =2 S and x0 2 Xg : Go to Stage
2.

We now de�ne Stage k (1 < k < n) ; assuming that the stage k � 1 has been reached and
Ak�1 was de�ned on it.

3Observe again that the preferences we are considering satisfy (P.1) and hence, rules do not operate on

the universal domain of preferences over A: Thus, the Gibbard-Satterthwaite theorem can not be applied (see

Gibbard (1973) and Satterthwaite (1975)).
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Stage k. Let Ak = C(Ak�1; R�k�1): Consider two cases.

1. jC (Ak; R�k)j = 1: Then, C (Ak; R�k) = � (R�k) : Set (Sk; xk) = C (Ak; R�k) and observe
that �k 2 Sk: De�ne

f�;x (R) = (Sk; xk) :

2. jC (Ak; R�k)j > 1: Then, C (Ak; R�k) = f(S; x0) 2 A j �i =2 S for all i � k and x0 2 Xg :
Go to Stage k + 1.

We now de�ne Stage n; the last stage of the procedure, assuming that the stage n� 1 has
been reached and An�1 was de�ned on it.

Stage n. Let An = C(An�1; R�n�1): Consider two cases.

1. jC (An; R�n)j = 1: Then, C (An; R�n) = � (R�n) : Set (Sn; xn) = C (An; R�n) and observe
that �n 2 Sn: De�ne

f�;x (R) = (Sn; xn) :

2. jC (An; R�n)j > 1: Then, C (An; R�n) = f(?; x0) 2 A j x0 2 Xg : De�ne

f�;x (R) = (?; x) :

Example 1 below illustrates this procedure.

Example 1 Let N = f1; 2g and X = fa; b; cg be the set of agents and the set of outcomes,
and consider the identity permutation �, where �1 = 1 and �2 = 2; and x = a: We apply

the serial dictator rule f�;a to the following four preference pro�les, where we give the list of

the alternatives in decreasing order from the top and we only order the alternatives needed to

compute f�;a at the four pro�les.

R1 R01 R2 R02

(N; b) f(S; y) 2 A j 1 =2 S; y 2 Ag (N; a) (N; a)

(N; b) (N; b)

(f2g ; c) f(S; y) 2 A j 2 =2 S; y 2 Ag

:

Then,

f�;a (R1; R2) = (N; b) ;

f�;a (R1; R
0
2) = (N; b)

f�;a (R01; R2) = (f2g ; c) ; and

f�;a (R01; R
0
2) = (?; a) : �
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We are now ready to state Theorem 1, the characterization of the class of all strategy-proof,

unanimous and non-bossy rules as the family of all serial dictator rules. Section 5 contains

the proof of Theorem 1 and three examples of rules indicating the independence of the three

properties used in the characterization.

Theorem 1 Assume jXj � 3: A rule f : R! A is strategy-proof, unanimous and non-bossy

if and only if f is a serial dictator rule for some permutation � 2 � and alternative x 2 X:

5 Proof of Theorem 1

We start by presenting an additional notion and a sketch of the proof that follows. Given

f : R! A; the option set of i 2 N at R 2 R; denoted by oi(R), is the set of alternatives that
may be chosen by f when the other agents declare the subpro�le R�i; namely,

oi (R) = fa 2 A j a = f (R0i; R�i) for some R0i 2 Rig :

Notice that the option set of i at R does not depend on Ri: We use the full pro�le R just for

notational convenience.

The proof that, for any � and x, the serial dictator rule f�;x is strategy-proof, unanimous

and non-bossy is easy. The main idea of the proof of the other implication is as follows. We

�rst show that any strategy-proof, unanimous and non-bossy rule is e¢ cient and monotonic;

moreover, at every pro�le R; the rule selects the alternative that is simultaneously the best

alternative on the option set of each agent at R. These three facts will be useful later on.

The main step of the proof is to construct from f , and for every subset of agents N� � N ,

a rule g on the set of strict preferences over the set of outcomes X only, which depends on

N�: Since jXj � 3 (here is when this assumption plays a crucial role) and g is onto (because
f is unanimous), by the Gibbard-Satterthwaite theorem, g is dictatorial; denote by d(N�) its

dictator. The remainder of proof consists of two last steps (the structure of the options sets

plays an important role here). First, a preliminary extension in which we show that f has to

be also dictatorial on a subdomain of pro�les (over A) related with the universal domain of

preferences over X (which depends on N�) under which d(N�) is the dictator of g. Second, we

obtain the series of dictators by applying the above result sequentially to N� = N; and setting

�1 = d(N); to N� = Nnf�1g; and setting �2 = d(Nnf�1g); and so on. Finally, the default
outcome x, needed to de�ne a serial dictator rule, is obtained by looking at the outcome chosen

by f (together with the empty society) at any pro�le R for which �(Ri) = [?]i for all i 2 N:
We proceed formally by presenting some lemmata that will be used in the proof.
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Lemma 1 Let f : R ! A be a strategy-proof, unanimous and non-bossy rule. Then, the

following hold.

(1) f satis�es monotonicity.

(2) f satis�es e¢ ciency.

(3) For all R 2 R and i 2 N; f (R) = C (oi (R) ; Ri) :

Proof Assume f : R! A is strategy-proof, unanimous and non-bossy. We prove the three

statements.

(1) Suppose R 2 R, i 2 N; and R0i 2 Ri are such that L (f (R) ; Ri) � L (f (R) ; R0i) and
f (R) 6= f (R0i; R�i) : Three cases are possible:

1. f (R)Pif (R0i; R�i). Since L (f (R) ; Ri) � L (f (R) ; R0i) ; f (R0i; R�i) 2 L (f (R) ; R0i) and
hence f (R)P 0if (R

0
i; R�i) : Thus, i manipulates f at (R

0
i; R�i) via Ri; which contradicts

strategy-proofness:

2. f (R0i; R�i)Pif (R) : Similarly, this contradicts strategy-proofness of f since imanipulates

f at R via R0i:

3. f (R0i; R�i) Iif (R) : Then, by (P.2), i =2 fN (R0i; R�i)[fN (R) : By non-bossiness; f (R0i; R�i) =
f (R) which is a contradiction.

(2) Suppose f is not e¢ cient. Namely, there exist R 2 R and a 2 A such that aRif (R)
for all i 2 N and aPjf (R) for some j 2 N: Let R0 2 R be such that for each k 2 N; � (R0k) =
fa0 2 A j a0Ikag and orders the rest of alternatives as Rk does. Consider the pro�le (R01; R�1) 2
R and suppose that f (R01; R�1) 6= f (R) : If f (R01; R�1) I1f (R) then 1 =2 fN (R01; R�1)[fN (R),
but this contradicts non-bossiness: If f (R01; R�1)P1f (R) then f is not strategy-proof. If

f (R)P1f (R
0
1; R�1) then f (R)P

0
1f (R

0
1; R�1) ; which means that 1 manipulates f at (R

0
1; R�1)

via R1: Repeating this argument sequentially for agents k = 2; : : : ; n we obtain that f (R0) =

f (R). However, by unanimity, f(R0) 2
T
k2N

� (R0k) : Since f (R
0) = f (R) ; f(R) can not be

dominated by a, implying that f is e¢ cient.

(3) Let R 2 R and i 2 N be arbitrary and consider a = (S; x) 2 C (oi (R) ; Ri) : Then,
aRif (R) : Assume f (R) 6= a: Two cases are possible:

1. i 2 S: Then, aPif (R) : Since a 2 oi (R) ; a = f (R0i; R�i) for some R0i 2 Ri; which means

that i manipulates f at R via R0i: A contradiction.

12



2. i =2 S: By non-bossiness, i 2 fN (R) and hence, aPif (R) : Now, we obtain a contradiction
with strategy-proofness of f by proceeding in a similar way as we did in the previous

case. �

For the next steps in the proof, it will be useful to consider the set F of all complete,

transitive and antisymmetric binary relations over X: Namely, F can be seen as the set of all

strict preferences over X: Now, for each N� � N; each i 2 N and each strict preference �i
over X we associate a preference over 2N �X (namely, an element of Ri), denoted by RN�;�i,

by selecting one among those satisfying the following features.

� If i 2 N�; consider several cases:

� If i 2 S \ T � N�; then (S; x)PN�;�i (T; y) if and only if x �i y:

� If i 2 T ( S � N�; then (S; x)PN�;�i (T; x) for all x 2 X:

� If i 2 S � N�; then (S; x)PN�;�i (?; y) for all x; y 2 X:

� If i 2 S and S \ (NnN�) 6= ?; then (?; x)PN�;�i (S; y) for all x; y 2 X:

� If i =2 N�; then (?; x)PN�;�i (S; y) for all S � N such that i 2 S and for all x; y 2 X:4

Note that for each N�; each i 2 N and each �i over X there are many preferences in Ri

satisfying the above conditions. We just select one of them, and denote it by RN�;�i.

FixN� � N and de�ne a social choice function g : FN� ! X as follows. For each subpro�le

(�i)i2N� 2 FN�
of preferences over X set

g((�i)i2N�) = fX((RN�;�i)i2N):

Lemma 2 below says that if f is strategy-proof, unanimous and non-bossy, then g is dictatorial;

namely, there exists j 2 N� such that for all (�i)i2N� 2 FN�
; g((�i)i2N�) = �(�j) where

�(�j) �j y for all y 2 Xnf� (�j)g.

Lemma 2 Let f : R ! A be strategy-proof, unanimous and non-bossy. Then, for all

N� � N , the social choice function g is dictatorial.

Proof Fix N� � N: Since g is de�ned on the universal domain of strict preference pro�les
on X; the Gibbard-Satterthwaite theorem says that if g is onto (for each x 2 X there exists

(�i)i2N� such that g((�i)i2N�) = x) and strategy-proof, then g is dictatorial.

4The preference RN�;�i may not depend on �i; but for simplicity we maintain the notation RN�;�i .
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We �rst prove that g is onto. Let x and (�i)i2N� 2 FN�
be such that for each i 2 N�;

�(�i) = x: By de�nition of RN�;�i ; �(RN�;�i) = (N
�; x) if i 2 N� and (N�; x) 2 � (RN�;�i) if

i =2 N�: Since f is unanimous and
T
i2N

� (RN�;�i) = (N
�; x), f((RN�;�i)i2N) = (N

�; x). Thus,

g((�i)i2N�) = fX((RN�;�i)i2N) = x:

We now prove that g is strategy-proof. Suppose otherwise. Then, there exist (�i)i2N� ;

j 2 N� and �0j such that
g(�0j;��j) �j g(�j;��j): (1)

By de�nition of g; fX((RN�;�i)i2N) = g(�j;��j) and fX(RN�;�0j ; (RN�;�i)i6=j) = g(�0j;��j):
By de�nition of RN�;�i we know that for each i 2 N�; each �i2 F ; each x 2 X; and each
S � N; S 6= N�; we have that (N�; x)PN�;�i (S; x). Besides, for each i 2 NnN�; each �i2 F ;
each x 2 X; and each S � N with i 2 S we have that (N�; x)PN�;�i (S; x) : Since f is e¢ cient,

f((RN�;�i)i2N) = (N�; g(�j;��j)) and

f(RN�;�0j ; (RN�;�i)i6=j) =
�
N�; g(�0j;��j)

�
:

By de�nition of RN�;�j and (1)�
N�; g(�0j;��j)

�
PN�;�j (N

�; g (�j;��j)) ;

which contradicts that f is strategy -proof. �

Fix Ri 2 Ri and a 2 A: Denote by Ra;i the preference over A obtained from Ri by just

placing a, and all its indi¤erent alternatives (if any), at the bottom of the ordering. Formally,

Ra;i is de�ned so that a0Ra;ia; for all a0 2 A and, for all a0; a00 2 An fag, a0Ra;ia00 if and only if
a0Ria

00: Similarly, Rai denotes the preference over A obtained from Ri by just placing a, and

all its indi¤erent alternatives (if any), at the top of the ordering. Formally, Rai is de�ned so

that aRai a
0; for all a0 2 A and, for all a0; a00 2 An fag, a0Rai a00 if and only if a0Ria00:

Lemma 3 Let f : R ! A be strategy-proof, unanimous and non-bossy, and let R 2 R and

i; j 2 S � N be such that i 6= j; f(R) = (S; x) and joi (R)j � 3: Then, joj (R)j = 1:

Proof Set a = (S; x): Since f(R) = a; a 2 oi (R)[oj (R) : Suppose joj (R)j � 2 holds. Since
joi (R)j � 3; we can �nd a0 2 oi (R) n fag and a00 2 oj (R) n fag such that a0 6= a00: Consider

any R0i 2 Ri; where

R0i =

(
Ra00;i if aPia00

Ra
00
i if a00Pia:
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Notice that a00Iia does not hold since i 2 S and a = (S; x): Symmetrically, consider any

R0j 2 Rj, where

R0j =

(
Ra0;j if aPja0

Ra
0
j if a0Pja:

Again, a0Ija does not hold since j 2 S and a = (S; x): By monotonicity, f(R) = f
�
R0j; R�j

�
=

f (R0i; R�i) = f
�
R0i; R

0
j; R�i;j

�
= a; where R�ij means RNnfi;jg:

Claim 1: (i) oi (R) = oi(R0i; R
0
j; R�i;j) and (ii) oj (R) = oj(R

0
i; R

0
j; R�i;j):

Proof: We only prove that oi (R) = oi(R
0
i; R

0
j; R�i;j) holds (the proof of the case oj (R) =

oj(R
0
i; R

0
j; R�i;j) is similar and we omit it). Suppose otherwise and assume oi (R) noi(R0i; R0j; R�i;j) 6=

? (the proof of the other case oi(R0i; R0j; R�i;j)noi (R) 6= ? is similar and we omit it). Take anyea 2 oi (R) noi(R0i; R0j; R�i;j): Since ea 2 �(Rea
i ); ea 2 oi (R) = oi(Rea

i ; R�i) and, by (3) of Lemma

1, f(R
ea
i ; R�i) = C(oi(R

ea
i ; R�i); R

ea
i ). Hence, f(R

ea
i ; R�i) = ea: Since ea =2 oi(R

0
i; R

0
j; R�i;j);

f(R
ea
i ; R

0
j; R�i;j) 6= ea: Hence, L(f(Rea

i ; R
0
j; R�i;j); R

ea
i ) � L(f(R

ea
i ; R

0
j; R�i;j); Ri). Since f is

monotone, f(R
ea
i ; R

0
j; R�i;j) = f(Ri; R

0
j; R�ij) = a: We now distinguish between two cases.

Case 1: eaP 0ja: Then,
f(R

ea
i ; Rj; R�i;j) = eaP 0ja = f(Rea

i ; R
0
j; R�i;j):

Thus, j manipulates f at (R
ea
i ; R

0
j; R�i;j) via Rj; which is a contradiction.

Case 2: aP 0jea: By de�nition of R0j; aPjea: Then,
f(R

ea
i ; R

0
j; R�i;j) = aPjea = f(Rea

i ; Rj; R�i;j):

Thus, j manipulates f at (R
ea
i ; Rj; R�i;j) via R

0
j; which is also a contradiction. Since eaI 0ja is

not possible because j 2 S and a = (S; x) we have �nished the proof of Claim 1. �
We now de�ne two new preferences ~Ri; ~Rj, where

~Ri =

(
(Ra00;i)

a0 if aPia00

(R
a0

i )
a00 if a00Pia

and

~Rj =

(
(Ra0;j)

a00 if aPja0

(Ra
00
j )

a0 if a0Pa:

Claim 2: (i) f( ~Ri; R0j; R�ij) = a
0 and (ii) f(R0i; ~Rj; R�ij) = a

00:

Proof:
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(i) f( ~Ri; R0j; R�ij) = a0: Since a0 2 oi (R), by Claim 1, a0 2 oi(R
0
i; R

0
j; R�ij): If aPia

00,

C(oi(R
0
i; R

0
j; R�ij);

~Ri) = a
0. Since f is strategy-proof, f( ~Ri; R0j; R�ij) = a

0: If a00Pia then a00 2
�( ~Ri): Assume �rst that a00 2 oi(R0i; R0j; R�ij). Since f is strategy-proof, f( ~Ri; R0j; R�ij) = a00:
Since f(R0i; R

0
j; R�ij) = a, i manipulates f at (R0i; R

0
j; R�ij) via ~Ri; a contradiction. Hence,

a00 =2 oi(R0i; R0j; R�ij): Since a0 2 oi(R0i; R0j; R�ij) and f is strategy-proof, f( ~Ri; R0j; R�ij) = a0

because a0 = C(Anfa00g; ~Ri):
(ii) f(R0i; ~Rj; R�ij) = a00: Since a00 2 oj (R) ; by Claim 1, a00 2 oj(R0i; R0j; R�ij): If aPja0,

C(oj(R
0
i; R

0
j; R�ij);

~Rj) = a
00. Since f is strategy-proof, f(R0i; ~Rj; R�ij) = a

00: If a0Pja then a0 2
�( ~Rj): Assume �rst that a0 2 oj(R0i; R0j; R�ij): Since f is strategy-proof, f(R0i; ~Rj; R�ij) = a0:
Since f(R0i; R

0
j; R�ij) = a, j manipulates f at (R0i; R

0
j; R�ij) via ~Rj; a contradiction. Hence,

a0 =2 oj(R0i; R0j; R�ij): Since a00 2 oj(R0i; R0j; R�ij) and f is strategy-proof, f(R0i; ~Rj; R�ij) = a00

because a00 = C(Anfa0g; ~Rj): And this �nishes the proof of Claim 2. �
We now proceed with the proof of Lemma 3 by considering four di¤erent cases:

(1) Assume aPia00: Since f(R0i; ~Rj; R�ij) = a
00 by (ii) in Claim 2, U(f(R0i; ~Rj; R�ij); R

0
i) = A.

Hence, U(f(R0i; ~Rj; R�ij); ~Ri) � U(f(R0i; ~Rj; R�ij); R0i); and by monotonicity,

f( ~Ri; ~Rj; R�ij) = f(R
0
i;
~Rj; R�ij) = a

00:

(2) Assume a00Pia: Since f(R0i; ~Rj; R�ij) = a
00 by (ii) in Claim 2, L(f(R0i; ~Rj; R�ij); ~Ri) = A.

Hence, L(f(R0i; ~Rj; R�ij); R
0
i) � L(f(R0i; ~Rj; R�ij); ~Ri); and by monotonicity,

f( ~Ri; ~Rj; R�ij) = f(R
0
i;
~Rj; R�ij) = a

00:

(3) Assume aPja0: Since f( ~Ri; R0j; R�ij) = a
0 by (i) in Claim 2, U(f( ~Ri; R0j; R�ij); R

0
j) = A.

Hence, U(f( ~Ri; R0j; R�ij); ~Rj) � U(f( ~Ri; R0j; R�ij); R0j); and by monotonicity,

f( ~Ri; ~Rj; R�ij) = f( ~Ri; R
0
j; R�ij) = a

0:

(4) Assume a0Pja: Since f( ~Ri; R0j; R�ij) = a
0 by (i) in Claim 2, L(f( ~Ri; R0j; R�ij); ~Rj) = A.

Hence, L(f( ~Ri; R0j; R�ij); R
0
j) � L(f( ~Ri; R0j; R�ij); ~Rj); and by monotonicity,

f( ~Ri; ~Rj; R�ij) = f( ~Ri; R
0
j; R�ij) = a

0:

Thus, in each of the four possible cases aPia00 and aPja0; aPia00 and a0Pja; a00Pia and aPja0,

and a00Pia and a0Pja; we have that f( ~Ri; ~Rj; R�ij) = a00 and f( ~Ri; ~Rj; R�ij) = a0; which is a

contradiction with a0 6= a00. �
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Given N� � N we know, by Lemma 2, that the function g, induced by f; is dictatorial

on its domain FN�
: Let d (N�) 2 N� be the dictator. Using the identi�cation described just

before Lemma 2, for every (N�;�i) choose a particular RN�;�i 2 Ri: Consider the subdomain

RN�
= fR 2 R j R = (RN�;�i)i2N for some (�i)i2N� 2 FN�g:

Lemma 4 Let N� � N and R 2 R be such that �(Rd(N�)) = (N
�; x) for some x 2 X and

(N�; x) 2
T

j2NnN�
� (Rj) : Then, f (R) = (N�; x) :

Proof Assume the hypothesis of Lemma 4 holds. By Lemma 2, fX (R) = g
�
(�i)i2N�

�
= x:

By e¢ ciency of f and the de�nition of (RN�;�i)i2N ; fN (R) = N
�: Hence,

f (R) = (N�; x) (2)

for all R 2 RN�
such that �(Rd(N�)) = (N

�; x).

Now, let R 2 R be such that (i) �(Rd(N�)) = (N
�; x) ; (ii) there exists i 2 N�nfd(N�)g such

that Ri 2 Ri, and for all j 2 Nn fd (N�) ; ig, Rj 2 RN�
j :We want to show that f (R) = (N

�; x)

holds. Consider any R0i 2 RN�
i : By (2), for all y 2 X; (N�; y) 2 od(N�) (R

0
i; R�i) : Since jXj � 3;��od(N�) (R

0
i; R�i)

�� � 3,. By Lemma 3, joi (R0i; R�i)j = 1. Since (N�; x) 2 oi (R
0
i; R�i) and

joi (R0i; R�i)j = 1; oi (R
0
i; R�i) = (N�; x) : Since the option set of i at R does not depend on

Ri; oi (R
0
i; R�i) = oi (R). This implies that oi(R) = (N

�; x) : Thus, f (R) = (N�; x) :

Applying successively the argument above we obtain that for all R 2 R satisfying (i)

�(Rd(N�)) = (N�; x) ; (ii) for all i 2 N�nfd(N�)g, Ri 2 Ri, and (iii) for all j 2 NnN�,

Rj 2 RN�
j ; we have that f (R) = (N

�; x) : �

Lemma 5 Assume N 0 ( N 00 � N are such that d (N 00) 2 N 0. Then, d (N 0) = d (N 00) :

Proof Suppose not. Let x 2 X and consider R 2 R where (i) Rd(N 00) satis�es �(Rd(N 00)) =

(N 00; x), (ii) Rd(N 0) satis�es �(Rd(N 0)) = (N 0; x) and (iii) for each i 2 Nn fd (N 0) ; d (N 00)g,
Ri is any preference in the subdomain RN�

i for N� = fd (N 0) ; d (N 00)g : By Lemma 4, with
N� = N 00, f (R) = (N 00; x) : By Lemma 4 again, with N� = N 0, f (R) = (N 0; x) ; which is a

contradiction. �

Proof of Theorem 1 Let � 2 � and x 2 X be given. It is easy to show that the serial

dictator rule f�;x is strategy-proof, unanimous and non-bossy. To prove the other implication,

assume f : R ! A is strategy-proof, unanimous and non-bossy. We will identify from f a

permutation of agents � 2 � and an alternative x 2 X such that f = f�;x: We �rst de�ne

� recursively by setting �1 = d (N) and, for all i = 2; : : : ; n; �i = d (Nn f�1; : : : ; �i�1g) : To
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identify x 2 X; let R 2 R be such that, for all i 2 N; � (Ri) = [?]i : Thus,\
i2N

� (Ri) = f(?; x0) 2 A j x0 2 Xg :

By unanimity, f (R) 2
T
i2N

� (Ri) : Set x = fX (R) : We now prove that f = f�;x: Let R 2 R

be arbitrary. Two cases are possible.

Case 1. j� (R�1)j = 1 (i.e., �(R�1) =2 [?]�1). Thus, � (R�1) = (S1; x1) and �1 2 S1: By
de�nition, f�;x (R) = (S1; x1) : If S1 = N; by lemma 4, f(R) = (S1; x1):Hence, f(R) = f�;x(R):

Assume S1 ( N: For each j 2 NnS1, let R0j be any preference in the subdomain RN�
j induced

whenN� = S1:Observe that �(R0j) =2 [?]j: Since �1 2 S1; by Lemmata 4 and 5, f(RS1 ; R0�S1) =
(S1; x1). Let i 2 NnS1: By Lemma 4, (S1 [ fig ; y) 2 o�1(RS1[fig; R0�(S1[fig)) for all y 2 X: By
Lemma 3,

���oi(RS1[fig; R0�(S1[fig))��� = 1: Since oi(RS1[fig; R
0
�(S1[fig)) = oi(RS1 ; R

0
�S1); because

in both problems �1 determines the outcome and R�1 is the same in both pro�les, we deduce

that
��oi(RS1 ; R0�S1)�� = 1. Since f(RS1 ; R

0
�S1) = (S1; x1) ; oi(RS1 ; R

0
�S1) = (S1; x1). Hence,

f(RS1[fig; R
0
�(S1[fig)) = (S1; x1) : Similarly, f(RS1[fi;jg; R

0
�(S1[fi;jg)) = (S1; x1) holds when j 2

Nn (S1 [ fig) : Repeating this process for the rest of the agents in NnS1, we obtain that
f(R) = (S1; x1). Hence, f(R) = f�;x(R):

Case 2. j� (R�1)j > 1: Thus, � (R�1) = [?]�1 : We consider two subcases separately.
Case 2.1. jC (� (R�1) ; R�2)j = 1 (i.e., �(R�2) =2 [?]�2). Set C (� (R�1) ; R�2) = (S2; x2)

and observe that �2 2 S2: It is immediate to see that f�;x (R) = (S2; x2) : We now prove that
f (R) = (S2; x2) : For each j 2 NnS2; let R0j be any preference in the subdomain RN�

j induced

when N� = S2. Note that R�1 belongs to the subdomain RN�
�i
and take R0�1 = R�1. Using

arguments similar to those used in Case 1 above, we can show that f (R) = (S2; x2) :

Case 2.2. jC (� (R�1) ; R�2)j > 1: Thus,

C (� (R�1) ; R�2) = f(S; y) 2 A j �1 =2 S; �2 =2 S and y 2 Xg :

Wewould consider again two subcases separately depending on whether jC (C (� (R�1) ; R�2) ; R�3)j
is equal to one or strictly larger.

Continuing with this procedure, at the end we would reach agent n and we would need

to consider two subcases separately depending on whether jC (An; R�n)j is equal to one or
strictly larger, where

An = f(fng ; y) 2 A j y 2 Xg [ f(?; y) 2 A j y 2 Xg :

If jC (An; R�n)j = 1 then C (An; R�n) = (fng ; xn) : Thus, f�;x (R) = (fng ; xn) : Using
arguments similar to those used above we can show that f (R) = (fng ; xn) :
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If jC (An; R�n)j > 1 then C (An; R�n) = f(?; y) 2 A j y 2 Xg : Then, f�;x (R) = (?; x) :
By de�nition of x; f (R) = (?; x) : �

The three properties used in the characterization of Theorem 1 are independent.

Consider the Approval Voting rule fAV;� de�ned as follows. Each i 2 N votes for the subset

Ai = fa 2 A j aRi [?]ig: For each a 2 A, compute the number of votes received by a; namely,
jfi 2 N : a 2 Aigj : The outcome with more votes is selected. The tie-breaking rule � is applied
whenever several alternatives obtain the largest number of votes, where � : 2Anf;g ! A is

such that for all A0 2 2Anf;g; �(A0) 2 A0: It is easy to see that, for any tie-breaking rule �;
fAV;� is unanimous and non-bossy but it is not strategy-proof.

Any constant rule satis�es strategy-proofness and non-bossiness but fails unanimity.

Let x; y 2 X with x 6= y: De�ne

f (R) =

(
f�;x if � (R�1) = [?]�1 and (f�1g; x)P1 (f�1g; y)
f�;y otherwise:

It is easy to see that f is strategy-proof and unanimous but it is not non-bossy.
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